Document Type : Original Research Article

Authors

1 Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, Bayero University, PMB 3011, Kano, Nigeria

2 Department of Chemistry, Joseph Sawuan Tarka University, Makurdi, Benue, Nigeria

10.48309/jeires.2024.5.3

Abstract

One of the most important areas of research to address the deterioration of metal surfaces in various settings is corrosion inhibition. The effectiveness of amoxicillin as a corrosion inhibitor on Fe (111), Al (110), and Cu (110) surfaces was investigated in this work using simulation techniques and Density Functional Theory (DFT). Using extensive computer simulations, we identified the key chemical reactions and energy processes that control the inhibitory pathway. Our results highlight the critical roles that the electrophilic site O22 and the Fukui nucleophilic site C2, S7 play in mediating the inhibitory pathway. Furthermore, the binding energies of -50.65, -38.97, and -43.24 for the Fe (111), Al (110), and Cu (110) surfaces, respectively, demonstrate the high affinity of amoxicillin for these substrates. In addition, the energies of -5.608 HOMO and -1.873 LUMO provide information on the electrical properties that support the inhibition process. When taken as a whole, these findings provide light on the molecular mechanisms by which amoxicillin inhibits corrosion, providing important information for the development of new materials and corrosion-resistant techniques. Interestingly, the Fe-amoxicillin interaction shows more potential than the Al-Cu interaction. In conclusion, the molecule amoxicillin had a mild inhibition in the order Fe(111) >Al(110)> Cu(110) also inhibiting a physisorption on both surfaces of Fe(111), Al(110), and Cu(110).

Keywords

Main Subjects

[1]. B. Ran, Y. Qiang, X. Liu, L. Guo, A.G. Ritacca, I. Ritacco, X. Li, Excellent performance of amoxicillin and potassium iodide as hybrid corrosion inhibitor for mild steel in HCl environment: Adsorption characteristics and mechanism insight, Journal of Materials Research and Technology, 2024, 29, 5402-5411. [Crossref], [Google Scholar], [Publisher]
[2]. M. Palomar-Pardavé, M. Romero-Romo, H. Herrera-Hernández, M. Abreu-Quijano, N.V. Likhanova, J. Uruchurtu, J. Juárez-García, Influence of the alkyl chain length of 2 amino 5 alkyl 1, 3, 4 thiadiazole compounds on the corrosion inhibition of steel immersed in sulfuric acid solutions, Corrosion Science, 2012, 54, 231-243. [Crossref], [Google Scholar], [Publisher]
[3]. A. Zarrouk, B. Hammouti, T. Lakhlifi, M. Traisnel, H. Vezin, F. Bentiss, New 1H-pyrrole-2, 5-dione derivatives as efficient organic inhibitors of carbon steel corrosion in hydrochloric acid medium: electrochemical, XPS and DFT studies, Corrosion Science, 2015, 90, 572-584. [Crossref], [Google Scholar], [Publisher]
[4]. M. Boulhaoua, M. El Hafi, S. Zehra, L. Eddaif, A.A. Alrashdi, S. Lahmidi, L. Guo, J.T. Mague, H. Lgaz, Synthesis, structural analysis and corrosion inhibition application of a new indazole derivative on mild steel surface in acidic media complemented with DFT and MD studies, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 617, 126373. [Crossref], [Google Scholar], [Publisher]
[5]. H. Lgaz, S. Masroor, M. Chafiq, M. Damej, A. Brahmia, R. Salghi, M. Benmessaoud, I.H. Ali, M.M. Alghamdi, A. Chaouiki, Evaluation of 2-mercaptobenzimidazole derivatives as corrosion inhibitors for mild steel in hydrochloric acid, Metals, 2020, 10, 357. [Crossref], [Google Scholar], [Publisher]
[6]. M. Rbaa, M. Galai, A.S. Abousalem, B. Lakhrissi, M.E. Touhami, I. Warad, A. Zarrouk, Synthetic, spectroscopic characterization, empirical and theoretical investigations on the corrosion inhibition characteristics of mild steel in molar hydrochloric acid by three novel 8-hydroxyquinoline derivatives, Ionics, 2020, 26, 503-522. [Crossref], [Google Scholar], [Publisher]
[7]. M. Ouakki, M. Galai, M. Rbaa, A.S. Abousalem, B. Lakhrissi, M.E. Touhami, M. Cherkaoui, Electrochemical, thermodynamic and theoretical studies of some imidazole derivatives compounds as acid corrosion inhibitors for mild steel, Journal of Molecular Liquids, 2020, 319, 114063. [Crossref], [Google Scholar], [Publisher]
[8]. A. El Aloua, M. Oubahou, A. El Bouari, O. Tanane, Expired amoxicillin as an eco-friendly corrosion inhibitor for cast steel in sulfuric acid environment: electrochemical, surface and thermodynamic studies, Journal of Solid State Electrochemistry, 2023, 1-15. [Crossref], [Google Scholar], [Publisher]
[9]. N.O. Eddy, E.E. Ebenso, Quantum chemical studies on the inhibition potentials of some penicillin compounds for the corrosion of mild steel in 0.1 M HCl, Journal of Molecular Modeling, 2010, 16, 1291-1306. [Crossref], [Google Scholar], [Publisher]
[10]. A.A. Siaka, N. Eddy, S. Idris, L. Magaji, Z. Garba, I. Shabanda, Quantum Chemical Studies of corrosion inhibition and adsorption potentials of Amoxicillin on mild steel in HCl solution, International Journal of Modern Chemistry, 2013, 4, 1-10. [Google Scholar]
[11]. C. Verma, M. Quraishi, E. Ebenso, I. Obot, A. El Assyry, 3-Amino alkylated indoles as corrosion inhibitors for mild steel in 1M HCl: Experimental and theoretical studies, Journal of Molecular Liquids, 2016, 219, 647-660. [Crossref], [Google Scholar], [Publisher]
[12]. M.M. Kadhim, L.A.A. Juber, A.S. Al-Janabi, Estimation of the Efficiency of Corrosion Inhibition by Zn-Dithiocarbamate Complexes: a Theoretical Study, Iraqi Journal of Science, 2021, 3323-3335. [Crossref], [Google Scholar], [Publisher]
[13]. A.A. Muhammad, N.A. Thomas, S. AbubakarMinjibir, N.U. Shehu, F. Iorhuna, Exploring the Inhibition Potential of Carbamodithionic acid on Fe (111) Surface: A Theoretical Study, Journal of Engineering in Industerial  Reearch. 2024, 4, 201-210.  [Crossref], [Google Scholar], [Publisher]
[14]. A.K. Singh, Inhibition of mild steel corrosion in hydrochloric acid solution by 3-(4-((Z)-indolin-3-ylideneamino) phenylimino) indolin-2-one, Industrial & Engineering Chemistry Research, 2012, 51, 3215-3223. [Crossref], [Google Scholar], [Publisher]
[15]. I. Lukovits, E. Kalman, F. Zucchi, Corrosion inhibitors—correlation between electronic structure and efficiency, Corrosion, 2001, 57, 3-8. [Crossref], [Google Scholar], [Publisher]
[16]. M. Belghiti, S. Echihi, A. Dafali, Y. Karzazi, M. Bakasse, H. Elalaoui-Elabdallaoui, L. Olasunkanmi, E. Ebenso, M. Tabyaoui, Computational simulation and statistical analysis on the relationship between corrosion inhibition efficiency and molecular structure of some hydrazine derivatives in phosphoric acid on mild steel surface, Applied Surface Science, 2019, 491, 707-722. [Crossref], [Google Scholar], [Publisher]
[17]. T.A. Nyijime, H.F. Chahul, A. Ayuba, F. Iorhuna, Theoretical investigations on thiadiazole derivatives as corrosion inhibitors on mild steel,  Advanced Journal of Chemistry, Section A, , 2023, 6, 141-154. [Crossref], [Google Scholar], [Publisher]
[18]. L.T. Popoola, T.A. Aderibigbe, M.A. Lala, Mild steel corrosion inhibition in hydrochloric acid using cocoa pod husk-ficus exasperata: extract preparation optimization and characterization, Iranian Journal of Chemistry and Chemical Engineering, 2022, 41, 482-492. [Crossref], [Google Scholar], [Publisher]
[19]. R.M. Kubba, N.M. Al-Joborry, Theoretical study of a new oxazolidine-5-one derivative as a corrosion inhibitor for carbon steel surface, Iraqi Journal of Science, 2021, 1396-1403. [Crossref], [Google Scholar], [Publisher
[20]. K.A.K. Al-Rudaini, K.A.S. Al-Saadie, Milk Thistle Leaves Aqueous Extract as a New Corrosion Inhibitor for Aluminum Alloys in Alkaline Medium, Iraqi Journal of Science, 2021, 363-372. [Crossref], [Google Scholar], [Publisher]
[21]. M.A. Mohammed, R.M. Kubba, Experimental Evaluation for the Inhibition of Carbon Steel Corrosion in Salt and Acid Media by New Derivative of Quinolin-2-One, Iraqi Journal of Science, 2020, 61, 1861-1873. [Crossref], [Google Scholar], [Publisher]
[22]. S. Mammeri, N. Chafai, H. Harkat, R. Kerkour, S. Chafaa, Protection of steel against corrosion in acid medium using dihydropyrimidinone derivatives: experimental and DFT study, Iranian Journal of Science and Technology, Transactions A: Science, 2021, 45, 1607-1619. [Crossref], [Google Scholar], [Publisher]
[23]. F. Iorhuna, M.A. Ayuba, A.T. Nyijime, M. Sani, H. Abdulmumini, J.O. Oyeyode, A Comparative Computational Stimulation Studies on Corrosion Inhibition and Adsorptive, Eurasian Journal of Science and Technology, 2024, 4, 44-56.  [Crossref], [Google Scholar], [Publisher]
[24]. T.V. Kumar, J. Makangara, C. Laxmikanth, N.S. Babu, Computational studies for inhibitory action of 2-mercapto-1-methylimidazole tautomers on steel using of density functional theory method (DFT), International Journal of Computational and Theoretical Chemistry, 2016, 4, 1-6. [Google Scholar]
[25]. T. Esan, O. Oyeneyin, A. Olanipekun, N. Ipinloju, Corrosion inhibitive potentials of some amino acid derivatives of 1, 4-naphthoquinone–DFT calculations, Advanced Journal of Chemistry, Section A, 2022, 5, 263. [Crossref], [Google Scholar], [Publisher]
[26]. R.M. Kubba, N.M. Al-Joborry, N.J. Al-lami, Theoretical and experimental studies for inhibition potentials of imidazolidine 4-one and oxazolidine 5-one derivatives for the corrosion of carbon steel in Sea Water, Iraqi Journal of Science, 2020, 61, 2776-2796. [Crossref], [Google Scholar], [Publisher]
[27]. Z. Yavari, M. Darijani, M. Dehdab, Comparative theoretical and experimental studies on corrosion inhibition of aluminum in acidic media by the antibiotics drugs, Iranian Journal of Science and Technology, Transactions A: Science, 2018, 42, 1957-1967. [Crossref], [Google Scholar], [Publisher]
[28]. N.M. Al-Joborry, R.M. Kubba, Theoretical and Experimental Study for Corrosion Inhibition of Carbon Steel in Salty and Acidic Media by A New Derivative of Imidazolidine 4-One, Iraqi Journal of Science, 2020, 61, 1842-1860. [Crossref], [Google Scholar], [Publisher]
[29]. S. John, J. Joy, M. Prajila, A. Joseph, Electrochemical, quantum chemical, and molecular dynamics studies on the interaction of 4‐amino‐4H, 3, 5‐di (methoxy)‐1, 2, 4‐triazole (ATD), BATD, and DBATD on copper metal in 1N H2SO4, Materials and Corrosion, 2011, 62, 1031-1041. [Crossref], [Google Scholar], [Publisher]  
[30]. M. Belghiti, S. Echihi, A. Dafali, Y. Karzazi, M. Bakasse, H. Elalaoui-Elabdallaoui, L. Olasunkanmi, E. Ebenso, M. Tabyaoui, Computational simulation and statistical analysis on the relationship between corrosion inhibition efficiency and molecular structure of some hydrazine derivatives in phosphoric acid on mild steel surface, Applied Surface Science, 2019, 491, 707-722. [Crossref], [Google Scholar], [Publisher]
[31]. M.M. Kadhim, L.A.A. Juber, A.S. Al-Janabi, Estimation of the Efficiency of Corrosion Inhibition by Zn-Dithiocarbamate Complexes: a Theoretical Study, Iraqi Journal of Science, 2021, 62, 3323-3335. [Crossref], [Google Scholar], [Publisher]
[32]. D. Glossman-Mitnik, Computational study of the chemical reactivity properties of the Rhodamine B molecule, Procedia Computer Science, 2013, 18, 816-825. [Crossref], [Google Scholar], [Publisher]
[33]. A. Nahlé, R. Salim, F. El Hajjaji, M. Aouad, M. Messali, E. Ech-Chihbi, B. Hammouti, M. Taleb, Novel triazole derivatives as ecological corrosion inhibitors for mild steel in 1.0 M HCl: experimental & theoretical approach, RSC Advances, 2021, 11, 4147-4162. [Crossref], [Google Scholar], [Publisher]
[34]. L.H. Madkour, I. Elshamy, Experimental and computational studies on the inhibition performances of benzimidazole and its derivatives for the corrosion of copper in nitric acid, International Journal of Industrial Chemistry, 2016, 7, 195-221. [Crossref], [Google Scholar], [Publisher]
[35]. A.M. Ayuba, T.A. Nyijime, S.A. Minjibir, F. Iorhuna, Adsorption Monitoring of Triflouroaceticacid, Pentadecyl Ester and Pentadecanoic Acid, 14-Methyl-, Methyl Ester on Fe (110): using DFT and Molecular Simulation, Eurasian Journal of  Science and Technology, 2024, 4, 105-115. [Crossref], [Publisher]
[36]. G. Kılınççeker, M. Baş, F. Zarifi, K. Sayın, Experimental and Computational Investigation for (E)-2-hydroxy-5-(2-benzylidene) Aminobenzoic Acid Schiff Base as a Corrosion Inhibitor for Copper in Acidic Media, Iranian Journal of Science and Technology, Transactions A: Science, 2021, 45, 515-527. [Crossref], [Google Scholar], [Publisher]
[37]. J. Chen, X. Hu, J. Cui, Shikonin, vitamin K3 and vitamin K5 inhibit multiple glycolytic enzymes in MCF-7 cells, Oncology Letters, 2018, 15, 7423-7432. [Crossref], [Google Scholar], [Publisher]
[38]. H.A. AlMashhadani, K.A. Saleh, Electrochemical Deposition of Hydroxyapatite Co-Substituted By Sr/Mg Coating on Ti-6Al-4V ELI Dental Alloy Post-MAO as Anti-Corrosion, Iraqi Journal of Science, 2020, 2751-2761. [Crossref], [Google Scholar], [Publisher]
[39]. L. Afandiyeva, V. Abbasov, L. Aliyeva, S. Ahmadbayova, E. Azizbeyli, H.M. El-Lateef Ahmed, Investigation of organic complexes of imidazolines based on synthetic oxy-and petroleum acids as corrosion inhibitors, Iranian Journal of Chemistry and Chemical Engineering, 2018, 37, 73-79. [Crossref], [Google Scholar], [Publisher]
[40]. H. Jafari, F. Mohsenifar, K. Sayin, Effect of alkyl chain length on adsorption behavior and corrosion inhibition of imidazoline inhibitors, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 2018, 37, 85-103. [Crossref], [Google Scholar], [Publisher]
[41]. S. Elmi, M.M. Foroughi, M. Dehdab, M. Shahidi-Zandi, Computational evaluation of corrosion inhibition of four quinoline derivatives on carbon steel in aqueous phase, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 2019, 38, 185-200. [Crossref], [Google Scholar], [Publisher]
[42]. L.T. Popoola, T.A. Aderibigbe, M.A. Lala, Mild steel corrosion inhibition in hydrochloric acid using cocoa pod husk-ficus exasperata: extract preparation optimization and characterization, Iranian Journal of Chemistry and Chemical Engineering, 2022, 41, 482-492. [Crossref], [Google Scholar], [Publisher]  
[43]. R.M. Kubba, N.M. Al-Joborry, Theoretical study of a new oxazolidine-5-one derivative as a corrosion inhibitor for carbon steel surface, Iraqi Journal of Science, 2021, 1396-1403. [Crossref], [Google Scholar], [Publisher]
[44]. A.B. Adegoke, A.T.-A. Khan, R.A. Adepoju, Molecular Dynamic (MD) Simulation and Modeling the Bio-molecular Structure of Human UDP glucose-6-dehydrogenase Isoform 1 (hUGDH) Related to Prostate Cancer, Basrah Journal of Science/Magallat Al-Barat Li-L-ulum, 2020, 38. [Crossref], [Google Scholar], [Publisher]
[45]. T.A. Nyijime, P.I. Kutshak, H.F. Chahul, A.M. Ayuba, F. Iorhuna, V.O.A. Hudu, Theoretical investigation of aluminum corrosion inhibition using chalcone derivatives, Mediterranean Journal of Chemistry, 2024, 14, 58-68. [Crossref], [Google Scholar], [Publisher]
[46]. K. Chinthapally, B.S. Blagg, B.L. Ashfeld, Syntheses of symmetrical and unsymmetrical lysobisphosphatidic acid derivatives, The Journal of Organic Chemistry, 2022, 87, 10523-10530. [Crossref], [Google Scholar], [Publisher]
[47]. L. Guo, M. Zhu, J. Chang, R. Thomas, R. Zhang, P. Wang, X. Zheng, Y. Lin, R. Marzouki, Corrosion inhibition of N80 steel by newly synthesized imidazoline based ionic liquid in 15% HCl medium: experimental and theoretical investigations, International Journal of Electrochemical Science, 2021, 16, 211139. [Crossref], [Google Scholar], [Publisher]
[48]. H. Lgaz, S. Masroor, M. Chafiq, M. Damej, A. Brahmia, R. Salghi, M. Benmessaoud, I.H. Ali, M.M. Alghamdi, A. Chaouiki, Evaluation of 2-mercaptobenzimidazole derivatives as corrosion inhibitors for mild steel in hydrochloric acid, Metals, 2020, 10, 357. [Crossref], [Google Scholar], [Publisher]
[49]. D. Glossman-Mitnik, Computational study of the chemical reactivity properties of the Rhodamine B molecule, Procedia Computer Science, 2013, 18, 816-825. [Crossref], [Google Scholar], [Publisher]
[50]. A. Nahlé, R. Salim, F. El Hajjaji, M. Aouad, M. Messali, E. Ech-Chihbi, B. Hammouti, M. Taleb, Novel triazole derivatives as ecological corrosion inhibitors for mild steel in 1.0 M HCl: experimental & theoretical approach, RSC Advances, 2021, 11, 4147-4162. [Crossref], [Google Scholar], [Publisher]
[51]. T.A. Nyijime, H.F. Chahul, A. Ayuba, F. Iorhuna, Theoretical investigations on thiadiazole derivatives as corrosion inhibitors on mild steel, Advanced Journal of Chemistry, Section A, 2023, 6, 141-154. [Crossref], [Google Scholar], [Publisher]