Document Type : Original Research Article


1 Department of Science Laboratory Technology, Delta State University, Abraka, Delta State, Nigeria

2 Federal University of Lokoja, Lokoja, Nigeria

3 Department of Physics, College of Education Warri, Delta State, Nigeria

4 Department of Physics and Astronomy, University of Nigeria, Nsukka, Enugu State, Nigeria

5 National Centre for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan


SrS/Zr films were grown using an electrochemical deposition technique. The spectrum is polycrystalline with a cubic structure and a noticeable (111) peak. The addition of 0.01 mol of zirconium dopant increases the peak intensity, confirming successful doping. Precursor temperature affects peak intensity, indicating film crystallinity. The spectrum is cubic with a distinct (111) peak and is polycrystalline. Peak intensity rises with the addition of 0.01 mol zirconium dopant, implying dopant acceptance. Peak intensity grows with higher precursor temperature, indicating film crystallite. Cloudlike precipitates appear on the film surface due to variations in precursor temperature. The cloudlike precipitate recircled and created a dense cloud on the film surface with increasing precursor temperature. The SrS material with doping demonstrated consistent deposition and complete substrate coverage by nanoparticles for photovoltaic applications. The synthesized films have an energy bandgap of 1.23 eV to 1.50 eV.


Main Subjects

[1]. Y. Chen, S. Fan, G. Gao, Journal of Physics D: Applied Physics, 2022, 55, 455108. [Crossref], [Google Scholar], [Publisher]
[2]. M. Kanoğlu, Y.A. Çengel, J.M. Cimbala, Fundamentals and Applications of Renewable Energy, McGraw-Hill Education: New York, 2020. [Google Scholar], [Publisher]
[3]. E. Lisin, D. Shuvalova, I. Volkova, W. Strielkowski, Sustainability, 2018, 10, 1111. [Crossref], [Google Scholar], [Publisher]
[4]. T. Geremew, Journal of 3D Printing and Applications, 2022, 1, 1-24. [Crossref], [Google Scholar], [Publisher]
[5]. J.H. Seo, E. Swinnich, Y.Y. Zhang, M. Kim, Materials Research Letters, 2020, 8, 123-144. [Crossref], [Google Scholar], [Publisher]
[6]. S.J. Sweeney, J. Mukherjee, Optoelectronic Devices and Materials.  Springer International Publishing AG: Scotland, UK, 2017, pp. 897-932. [Crossref], [Google Scholar], [Publisher]
[7]. P. Priyadarshini, S. Das, R. Naik, RSC Advances, 2022, 12, 9599-9620. [Crossref], [Google Scholar], [Publisher]
[8]. V. Zaikova, N. Melnikova, A. Tebenkov, A. Mirzorakhimov, O. Shchetnikov, A. Babushkin, G. Sukhanova, IOP Publishing, 2017, 917, 082009. [Crossref], [Google Scholar], [Publisher]
[9]. S. Tishkov, A. Scherbak, A. Volkov, V. Karginova-Gubinova, A. Tleppaev, A. Pahomova, Tishkov, S., Shcherbak, A., Karginova-Gubinova, V., Volkov, A., Tleppayev, Pakhomova, 2020, 3354-3368. [Crossref], [Google Scholar], [Publisher]
[10]. N. Andryeyeva, O. Nikishyna, B. Burkynskyi, N. Khumarova, O. Laiko, H. Tiutiunnyk, Insights into Regional Development, 2021, 3, 198-212. [Crossref], [Google Scholar], [Publisher]
[11]. M. Ucal, G. Xydis, Sustainable Cities and Society, 2020, 60, 102210. [Crossref], [Google Scholar], [Publisher]
[12]. A.K. Nasr, M.K. Kashan, A. Maleki, N. Jafari, H. Hashemi, Entrepreneurship and Sustainability Issues, 2020, 7, 2526-2541. [Crossref], [Google Scholar]
[13]. A. Aghahosseini, C. Breyer, Energy conversion and management, 2018, 169, 161-173. [Crossref], [Google Scholar], [Publisher]
[14]. S.O. Samuel, M.L.-e. Frank, E. Ogherohwo, A. Ekpekpo, J. Zhimwang, I.L. Ikhioya, East European Journal of Physics, 2023, 189-196. [Crossref], [Google Scholar], [Publisher]
[15]. I.L. Ikhioya, E.U. Onoh, A.C. Nkele, B.C. Abor, B. Оbitte, M. Maaza, F.I. Ezema, East European Journal of Physics, 2023, 162-172. [Crossref], [Google Scholar], [Publisher]
[16]. I.L. Ikhioya, F.U. Ochai-Ejeh, C.I. Uruwah, Materials Research Innovations, 2023, 1-10. [Crossref], [Google Scholar], [Publisher]
[17]. I.L. Ikhioya, E.U. Onoh, D.N. Okoli, A.J. Ekpunobi, Materials Research Innovations, 2023, 1-9. [Crossref], [Google Scholar], [Publisher]
[18]. A.E. Hashim, F.T. Ibrahim, Chemical Methodologies, 2023, 7, 314-324. [Crossref], [Publisher]
[19]. Z.H. Ali, L.A. Abdullah, Chemical Methodologies, 2023, 7, 307-313. [Crossref], [Publisher]
[20]. F. Ali, I. Ahmad, A. Hussain, S. Ahmad, M. Zaka Ansar, Y. Adezuka, I.L. Ikhioya, Journal of Applied Organometallic Chemistry, 2023, 3, 308-320. [Crossref], [Publisher]
[21]. H. Shah, S. Afzal, M. Usman, K. Shahzad, I. Lucky, Advanced Journal of Chemistry, Section A, 2023, 6, 342–351.  [Crossref], [Google Scholar], [Publisher]
[22]. A. Heidaripour, F. Salmani, Asian Journal of Green Chemistry, 2024, 8, 15-24. [Crossref], [Publisher]
[23]. M. Farahmandjou, P. Khalili, Asian Journal of Green Chemistry, 2021, 5, 219-226. [Crossref], [Publisher]
[24]. F. Ibrahim, M.A. Shahoodh, S. Guermazi, Chemical Methodologies, 2023, 7, 871-882. [Crossref], [Publisher]
[25]. I.L. Ikhioya, A.C. Nkele, Arabian Journal for Science and Engineering, 2023, 1-9. [Crossref], [Google Scholar], [Publisher]
[26]. I.L. Ikhioya, N.I. Akpu, E. Onoh, S.O. Aisida, I. Ahmad, M. Maaza, F. Ezema, Journal of Medicinal and Nanomaterials Chemistry, 2023, 5, 156–167. [Crossref], [Publisher]
[27]. K.I. Udofia, I.L. Ikhioya, D.N. Okoli, A.J. Ekpunobi, Journal of Medicinal and Nanomaterials Chemistry, 2023, 5, 135–147. [Crossref], [Publisher]