Document Type : Review Article


1 Plant Pathology Department, Tarbiat Modares University, Tehran, Iran

2 Biosystems Engineering Department, Tarbiat Modares University, Tehran, Iran

3 Department of Mechanical Engineering and Production Management, HAW Hamburg, Hamburg, Germany



Agriculture has always been one of the most important and stable parts of human life for thousands of years because agricultural activities produce and supply raw materials for the food industry and animal feed. With the rapid increase of the population on the planet, besides the need to increase agricultural production, mankind will face many limitations in the supply of resources such as land, water, soil, etc. Although various fertilizers and pesticides have been very beneficial in increasing the production of agricultural products, their residues in soil and water cause damage to the environment, vegetation, and living organisms. The use of various nano-based technologies in agriculture (for example, in the design of nano-fertilizers/nano-pesticides with controlled release, nano-sensors, nano-fuels, nano-based soil conditioners, water treatment systems, gene transfer to plants, etc.) can increase agricultural production and save costs reduce environmental risks due to the controllable amount of agrochemical release, the right time, and the target area of agrochemicals. Nanotechnology can be further used to detect diseases in a rapid manner, improve the ability of plants to absorb nutrients from the soil, enhance food quality and safety, and reduce agricultural inputs. However, the use of nanotechnology in agriculture is still in the early developmental stage, and more research is needed to understand the potential risks of nanomaterials. Nano-enhanced products should undergo the same thorough approval processes as conventional pesticides and fertilizers. In addition, it is crucial to exercise caution in their use to minimize the release into groundwater.


Main Subjects

[1]. R. Prasad, A. Bhattacharyya, Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives, Frontiers in microbiology, 2017, 8, 264976. [Crossref], [Google Scholar], [Publisher]
[2]. H.A. Ayoub, M. Khairy, F.A. Rashwan, H.F. Abdel-Hafez, New Avenue for Sustainable Agriculture: A Short, Journal of Chemical Reviews, 2022, 4. [Crossref], [Publisher]
[3]. S.S. Mukhopadhyay, Nanotechnology in agriculture: prospects and constraints, Nanotechnology, Science and Applications, 2014, 63-71. [Google Scholar], [Publisher]
[4]. S. Tripathi, R. Sanjeevi, J. Anuradha, D.S. Chauhan, A.K. Rathoure, Nano-bioremediation: nanotechnology and bioremediation,  Research anthology on emerging techniques in environmental remediation, IGI Global, 2022, 135-149. [Crossref], [Google Scholar], [Publisher]
[5]. H. Ugbede Itodo, Controlled release of herbicides using nano-formulation: a review, Journal of Chemical Reviews, 2019, 1, 130-138. [Crossref], [Google Scholar], [Publisher]
[6]. P. Sciau, Nanoparticles in ancient materials: the metallic lustre decorations of medieval ceramics, 2012, 115. [Crossref], [Google Scholar], [PDF]
[7]. M. Loos, Nanoscience and nanotechnology, Carbon Nanotube Reinforced Composites, 2015, 1-36. [Google Scholar]
[8]. S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani, F. Rizzolio, The history of nanoscience and nanotechnology: from chemical–physical applications to nanomedicine, Molecules, 2019, 25, 112. [Crossref], [Google Scholar], [Publisher]
[9]. K.E. Drexler, Nanosystems: molecular machinery, manufacturing, and computation, John Wiley & Sons, Inc.1992. [Google Scholar], [Publisher]
[10]. M.A. Gad, M.j. Li, F.K. Ahmed, H. Almoammar, Nanomaterials for gene delivery and editing in plants: Challenges and future perspective, Multifunctional Hybrid Nanomaterials for Sustainable Agri-Food and Ecosystems, Elsevier, 2020, 135-153. [Crossref], [Google Scholar], [Publisher]
[11]. M.R.I. Sardara, F. Hasan, M.J. Alama, I.H. Nadima, M. Mahmuda, Production from Lignocellulosic Biomass: State of the Art of Processes, Technologies, and Optimization, Optimization, 2023, 3, 108-122. [Crossref], [Google Scholar]
[12]. B. Dong, R. Jiang, J. Chen, Y. Xiao, Z. Lv, W. Chen, Strategic nanoparticle-mediated plant disease resistance, Critical Reviews in Biotechnology, 2023, 43, 22-37. [Crossref], [Google Scholar], [Publisher]
[13]. J.M., Buriak, L.M., Liz-Marzán, W.J. Parak, X. Chen, Nano and plants, 2022, ACS Publications, pp. 1681-1684. [Crossref], [Google Scholar], [Publisher]
[14]. Y. Shang, M.K. Hasan, G.J. Ahammed, M. Li, H. Yin, J. Zhou, Applications of nanotechnology in plant growth and crop protection: a review, Molecules, 2019, 24, 2558. [Crossref], [Google Scholar], [Publisher]
[15]. P. Pramanik, P. Krishnan, A. Maity, N. Mridha, A. Mukherjee, V. Rai, Application of nanotechnology in agriculture, Environmental Nanotechnology Volume 4, 2020, 317-348. [Crossref], [Google Scholar], [Publisher]
[16]. M. Hussien, S.M. El-Ashry, W.M. Haggag, D.M. Mubarak, Response of mineral status to nano-fertilizer and moisture stress during different growth stages of cotton plants, International Journal of ChemTech Research, 2015, 8, 643-650. [Google Scholar], [PDF]
[17]. B. Ndaba, A. Roopnarain, R. Haripriya, M. Maaza, Biosynthesized metallic nanoparticles as fertilizers: An emerging precision agriculture strategy, Journal of Integrative Agriculture, 2022, 21, 1225-1242. [Crossref], [Google Scholar], [Publisher]
[18]. J.S. Duhan, R. Kumar, N. Kumar, P. Kaur, K. Nehra, S. Duhan, Nanotechnology: The new perspective in precision agriculture, Biotechnology Reports, 2017, 15, 11-23. [Crossref], [Google Scholar], [Publisher]
[19]. M.A. Ali, I. Rehman, A. Iqbal, S. Din, A.Q. Rao, A. Latif, T.R. Samiullah, S. Azam, T. Husnain, Nanotechnology, a new frontier in Agriculture, Advancements in Life Sciences, 2014, 1, 129-138. [Google Scholar], [Publisher]
[20]. K.M. Elsherifa, M.S. Sasib, A.M. Alkherrazc, M.S. Elayebc, Phosphate Diester Hydrolysis in Alkaline Solutions: The Role of Non-Leaving Groups, Journal of Applied Organometallic Chemistry, 2024, 4, 1-13. [Crossref], [Google Scholar], [Publisher]
[21]. S. Manikandan, R. Subbaiya, M. Saravanan, M. Ponraj, M. Selvam, A. Pugazhendhi, A critical review of advanced nanotechnology and hybrid membrane based water recycling, reuse, and wastewater treatment processes, Chemosphere, 2022, 289, 132867. [Crossref], [Google Scholar], [Publisher]
[22]. T. Zaheer, M.M. Ali, R.Z. Abbas, K. Atta, I. Amjad, A. Suleman, Z. Khalid, A.I. Aqib, Insights into nanopesticides for ticks: the superbugs of livestock, Oxidative medicine and cellular longevity, 2022, 2022. [Crossref], [Google Scholar], [Publisher]
[23]. N. Memarizadeh, M. Ghadamyari, M. Adeli, K. Talebi, Linear-dendritic copolymers/indoxacarb supramolecular systems: biodegradable and efficient nano-pesticides, Environmental Science: Processes & Impacts, 2014, 16, 2380-2389. [Crossref], [Google Scholar], [Publisher]
[24]. K.K. Singh, Role of nanotechnology and nanomaterials for water treatment and environmental remediation, International Journal of New Chemistry, 2022, 9, 165-190. [Crossref], [Google Scholar], [Publisher]
[25]. A. Pryadko, Y.R. Mukhortova, V.V. Botvin, I.Y. Grubova, M.R. Galstenkova, D.V. Wagner, E.Y. Gerasimov, E.V. Sukhinina, A.G. Pershina, A.L. Kholkin, A comprehensive study on in situ synthesis of a magnetic nanocomposite of magnetite and reduced graphene oxide and its effectiveness at removing arsenic from water, Nano-Structures & Nano-Objects, 2023, 36, 101028. [Crossref], [Google Scholar], [Publisher]
[26]. M. Kamle, D.K. Mahato, S. Devi, R. Soni, V. Tripathi, A.K. Mishra, P. Kumar, Nanotechnological interventions for plant health improvement and sustainable agriculture, 3 Biotech, 2020, 10, 168. [Crossref], [Google Scholar], [Publisher]
[27]. C. Fajardo, M. Gil-Díaz, G. Costa, J. Alonso, A. Guerrero, M. Nande, M. Lobo, M. Martín, Residual impact of aged nZVI on heavy metal-polluted soils, Science of the Total Environment, 2015, 535, 79-84. [Crossref], [Google Scholar], [Publisher]
[28]. M. Gil-Díaz, L. Ortiz, G. Costa, J. Alonso, M. Rodríguez-Membibre, S. Sánchez-Fortún, A. Pérez-Sanz, M. Martín, M. Lobo, Immobilization and leaching of Pb and Zn in an acidic soil treated with zerovalent iron nanoparticles (nZVI): physicochemical and toxicological analysis of leachates, Water, Air, & Soil Pollution, 2014, 225, 1-13. [Crossref], [Google Scholar], [Publisher]
[29]. Y. Wang, L. Guo, P. Qi, X. Liu, G. Wei, Synthesis of three-dimensional graphene-based hybrid materials for water purification: A review, Nanomaterials, 2019, 9, 1123. [Crossref], [Google Scholar], [Publisher]
[30]. S. Garg, R. Bhatia, P. Attri, Black but gold: Carbon nanomaterials for wastewater purification, Nanomaterials for Water Remediation; De Gruyter: Berlin, Germany, 2020, 42-92. [Crossref], [Google Scholar], [Publisher]
[31]. H. Chhipa, P. Joshi, Nanofertilisers, nanopesticides and nanosensors in agriculture, Nanoscience in food and agriculture 1, 2016, 247-282. [Crossref], [Google Scholar], [Publisher]
[32]. E. Omanović-Mikličanina, M. Maksimović, Nanosensors applications in agriculture and food industry, Bull Chem Technol Bosnia Herzegovina, 2016, 47, 59-70. [Google Scholar], [PDF]
[33]. F. Liu, G. Xiang, X. Chen, F. Luo, D. Jiang, S. Huang, Y. Li, X. Pu, A novel strategy of procalcitonin detection based on multi-nanomaterials of single-walled carbon nanohorns–hollow Pt nanospheres/PAMAM as signal tags, RSC advances, 2014, 4, 13934-13940. [Crossref], [Google Scholar], [Publisher]
[34]. M. Sharon, M. Sharon, Carbon nanomaterials: Applications in physico-chemical systems and biosystems, Defence Science Journal, 2008, 58, 460. [Google Scholar], [PDF]
[35]. M.S. Johnson, S. Sajeev, R.S. Nair, Role of Nanosensors in agriculture,  2021 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE), IEEE, 2021, 58-63. [Google Scholar], [Publisher]
[36]. K.S. Yao, S. Li, K. Tzeng, T.C. Cheng, C.Y. Chang, C. Chiu, C. Liao, J. Hsu, Z. Lin, Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens, Advanced materials research, 2009, 79, 513-516. [Crossref], [Google Scholar], [Publisher]
[37]. L.X. Yu, S. Chao, R.P. Singh, M.E. Sorrells, Identification and validation of single nucleotide polymorphic markers linked to Ug99 stem rust resistance in spring wheat, PLoS One, 2017, 12, e0171963. [Crossref], [Google Scholar], [Publisher]
[38]. E. Duveiller, R.P. Singh, J.M. Nicol, The challenges of maintaining wheat productivity: pests, diseases, and potential epidemics, Euphytica, 2007, 157, 417-430. [Crossref], [Google Scholar], [Publisher]
[39]. R. Cerda, J. Avelino, C. Gary, P. Tixier, E. Lechevallier, C. Allinne, Primary and secondary yield losses caused by pests and diseases: Assessment and modeling in coffee, PloS one, 2017, 12, e0169133. [Crossref], [Google Scholar], [Publisher]
[40]. P.L. Kashyap, S. Kumar, P. Jasrotia, D. Singh, G.P. Singh, Nanosensors for plant disease diagnosis: Current understanding and future perspectives, Nanoscience for Sustainable Agriculture, 2019, 189-205. [Crossref], [Google Scholar], [Publisher]
[41]. P. Jasrotia, P. Kashyap, A. Bhardwaj, S. Kumar, G. Singh, Nanotechnology scope and applications for wheat production: A review of recent advances, 2018. [Crossref], [Google Scholar], [Publisher]
[42]. S. Singh, M. Singh, V.V. Agrawal, A. Kumar, An attempt to develop surface plasmon resonance based immunosensor for Karnal bunt (Tilletia indica) diagnosis based on the experience of nano-gold based lateral flow immuno-dipstick test, Thin Solid Films, 2010, 519, 1156-1159. [Crossref], [Google Scholar], [Publisher]
[43]. M.A. Fernandez-Baldo, G.A. Messina, M.I. Sanz, J. Raba, Microfluidic immunosensor with micromagnetic beads coupled to carbon-based screen-printed electrodes (SPCEs) for determination of Botrytis cinerea in tissue of fruits, Journal of Agricultural and Food chemistry, 2010, 58, 11201-11206. [Crossref], [Google Scholar], [Publisher]
[44]. N. Chartuprayoon, Y. Rheem, J.C. Ng, J. Nam, W. Chen, N.V. Myung, Polypyrrole nanoribbon based chemiresistive immunosensors for viral plant pathogen detection, Analytical Methods, 2013, 5, 3497-3502. [Crossref], [Google Scholar], [Publisher]
[45]. R. Etefagh, E. Azhir, N. Shahtahmasebi, Synthesis of CuO nanoparticles and fabrication of nanostructural layer biosensors for detecting Aspergillus niger fungi, Scientia Iranica, 2013, 20, 1055-1058. [Crossref], [Google Scholar], [Publisher]
[46]. M. Zhang, W. Chen, X. Chen, Y. Zhang, X. Lin, Z. Wu, M. Li, Multiplex immunoassays of plant viruses based on functionalized upconversion nanoparticles coupled with immunomagnetic separation, Journal of Nanomaterials, 2013, 2013, 122-122. [Crossref], [Google Scholar], [Publisher]
[47]. Y. Fang, R.P. Ramasamy, Current and prospective methods for plant disease detection, Biosensors, 2015, 5, 537-561. [Crossref], [Google Scholar], [Publisher]
[48]. A. AMF, Nanofertilizers as an Alternative to Inorganic Fertilizers: A Review, African Journal of Food, Agriculture, Nutrition & Development, 2023, 23. [Crossref], [Google Scholar], [Publisher]
[49]. A. Loss, R.d.R. Couto, G. Brunetto, M.d. Veiga, M. Toselli, E. Baldi, Animal manure as fertilizer: changes in soil attributes, productivity and food composition, International Journal of Research- Granthaalayah, 2019, 7, 307. [Crossref], [Google Scholar], [Publisher]
[50]. A. Jha, D. Pathania, B. Damathia, P. Raizada, S. Rustagi, P. Singh, G.M. Rani, V. Chaudhary, Panorama of biogenic nano-fertilizers: A road to sustainable agriculture, Environmental Research, 2023, 116456. [Crossref], [Google Scholar], [Publisher]
[51]. M. Kah, H. Walch, T. Hofmann, Environmental fate of nanopesticides: durability, sorption and photodegradation of nanoformulated clothianidin, Environmental Science: Nano, 2018, 5, 882-889. [Crossref], [Google Scholar], [Publisher]
[52]. R. Raliya, V. Saharan, C. Dimkpa, P. Biswas, Nanofertilizer for precision and sustainable agriculture: current state and future perspectives, Journal of Agricultural and Food Chemistry, 2017, 66, 6487-6503. [Crossref], [Google Scholar], [Publisher]
[53]. A. Kalia, H. Kaur, Nano-biofertilizers: Harnessing dual benefits of nano-nutrient and bio-fertilizers for enhanced nutrient use efficiency and sustainable productivity, Nanoscience for Sustainable Agriculture, 2019, 51-73. [Crossref], [Google Scholar], [Publisher]
[54]. M. Fauzan, M. Fadhali, R. Fardinata, Y. Soerbakti, Microwave media simulation to generate nitrogen plasma at atmospheric pressure, Science, Technology and Communication Journal, 2021, 2, 19-25. [Crossref], [Google Scholar], [Publisher]
[55]. A.V. Barker, G.M. Bryson, Nitrogen, Handbook of plant nutrition, CRC Press, 2016, 37-66. [Google Scholar], [Publisher]
[56]. H.W. Al-Juthery, N.R. Lahmod, R.A. Al-Taee, Intelligent, nano-fertilizers: A new technology for improvement nutrient use efficiency (article review), IOP Conference Series: Earth and Environmental Science, IOP Publishing, 2021, 012086. [Crossref], [Google Scholar], [Publisher]
[57]. R. Liu, R. Lal, Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max), Scientific Reports, 2014, 4, 5686. [Crossref], [Google Scholar], [Publisher]
[58]. A. Priyam, N. Yadav, P.M. Reddy, L.O. Afonso, A.G. Schultz, P.P. Singh, Fertilizing benefits of biogenic phosphorous nanonutrients on Solanum lycopersicum in soils with variable pH, Heliyon, 2022, 8. [Crossref], [Google Scholar], [Publisher]
[59]. P. Jamdagni, J. Rana, P. Khatri, Comparative study of antifungal effect of green and chemically synthesised silver nanoparticles in combination with carbendazim, mancozeb, and thiram, IET Nanobiotechnology, 2018, 12, 1102-1107. [Crossref], [Google Scholar], [Publisher]
[60]. T. Prasad, P. Sudhakar, Y. Sreenivasulu, P. Latha, V. Munaswamy, K.R. Reddy, T. Sreeprasad, P. Sajanlal, T. Pradeep, Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut, Journal of Plant Nutrition, 2012, 35, 905-927. [Crossref], [Google Scholar], [Publisher]
[61]. H.M. Salama, Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.), International Research Journal of Biotechnology, 2012, 3, 190-197. [Google Scholar], [Publisher]
[62]. F. Fatima, A. Hashim, S. Anees, Efficacy of nanoparticles as nanofertilizer production: a review, Environmental Science and Pollution Research, 2021, 28, 1292-1303. [Crossref], [Google Scholar], [Publisher]
[63]. H. Mahmoodzadeh, M. Nabavi, H. Kashefi, Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus), 2013. [Google Scholar], [Publisher]
[64]. H. Feizi, P. Rezvani Moghaddam, N. Shahtahmassebi, A. Fotovat, Impact of bulk and nanosized titanium dioxide (TiO 2) on wheat seed germination and seedling growth, Biological trace element research, 2012, 146, 101-106. [Crossref], [Google Scholar], [Publisher]
[65]. E.R. López-Vargas, H. Ortega-Ortíz, G. Cadenas-Pliego, K. de Alba Romenus, M. Cabrera de la Fuente, A. Benavides-Mendoza, A. Juárez-Maldonado, Foliar application of copper nanoparticles increases the fruit quality and the content of bioactive compounds in tomatoes, Applied Sciences, 2018, 8, 1020. [Crossref], [Google Scholar], [Publisher]
[66]. M. Rui, C. Ma, Y. Rui, X. Fan, Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea), Frontiers in plant science, 2016, 7, 195361. [Crossref], [Google Scholar], [Publisher]
[67]. H.M. Abdel-Aziz, M.N. Hasaneen, A.M. Omer, Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil, Spanish Journal of Agricultural Research, 2016, 14, e0902-e0902. [Crossref], [Google Scholar], [Publisher]
[68]. J. George, Y. Shukla, Pesticides and cancer: insights into toxicoproteomic-based findings, Journal of proteomics, 2011, 74, 2713-2722. [Crossref], [Google Scholar], [Publisher]
[69]. I. Mahmood, S.R. Imadi, K. Shazadi, A. Gul, K.R. Hakeem, Effects of pesticides on environment, Plant, soil and microbes: volume 1: implications in crop science, 2016, 253-269. [Crossref], [Google Scholar], [Publisher]
[70]. S. Agrawal, P. Rathore, Nanotechnology pros and cons to agriculture: a review, International Journal of Current Microbiology and Applied Sciences, 2014, 3, 43-55. [Google Scholar], [PDF]
[71]. H. Chhipa, Nanofertilizers and nanopesticides for agriculture, Environmental chemistry letters, 2017, 15, 15-22. [Crossref], [Google Scholar], [Publisher]
[72]. L. Esteban-Tejeda, F. Malpartida, A. Esteban-Cubillo, C. Pecharromán, J. Moya, Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles, Nanotechnology, 2009, 20, 505701. [Crossref], [Google Scholar], [Publisher]
[73]. K. Giannousi, G. Sarafidis, S. Mourdikoudis, A. Pantazaki, C. Dendrinou-Samara, Selective synthesis of Cu2O and Cu/Cu2O NPs: Antifungal activity to yeast saccharomyces cerevisiae and DNA interaction, Inorganic Chemistry, 2014, 53, 9657-9666. [Crossref], [Google Scholar], [Publisher]
[74]. L. He, Y. Liu, A. Mustapha, M. Lin, Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum, Microbiological Research, 2011, 166, 207-215. [Crossref], [Google Scholar], [Publisher]
[75]. C. Jayaseelan, A.A. Rahuman, A.V. Kirthi, S. Marimuthu, T. Santhoshkumar, A. Bagavan, K. Gaurav, L. Karthik, K.B. Rao, Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012, 90, 78-84. [Crossref], [Google Scholar], [Publisher]
[76]. S.B. Manjunatha, D.P. Biradar, Y.R. Aladakatti, Nanotechnology and its applications in agriculture: A review, Journal of Farm Science, 2016, 29, 1-13. [Google Scholar]
[77]. M.A. Balah, R.N. Pudake, Use nanotools for weed control and exploration of weed plants in nanotechnology, Nanoscience for Sustainable agriculture, 2019, 207-231. [Crossref], [Google Scholar], [Publisher]
[78]. A. Pérez‐de‐Luque, D. Rubiales, Nanotechnology for parasitic plant control, Pest Management Science: formerly Pesticide Science, 2009, 65, 540-545. [Crossref], [Google Scholar], [Publisher]
[79]. W. Liang, A. Yu, G. Wang, F. Zheng, P. Hu, J. Jia, H. Xu, A novel water-based chitosan-La pesticide nanocarrier enhancing defense responses in rice (Oryza sativa L) growth, Carbohydrate Polymers, 2018, 199, 437-444. [Crossref], [Google Scholar], [Publisher]
[80]. S.D. Ippólito, J.R. Mendieta, M.C. Terrile, C.V. Tonón, A.Y. Mansilla, S. Colman, L. Albertengo, M.S. Rodríguez, C.A. Casalongué, Chitosan as source for pesticide formulations, Biological Activities and Application of Marine Polysaccharides, 2017, 1, 3-15. [Crossref], [Google Scholar], [Publisher]
[81]. E.O. Hassan, T. Shoala, A.M. Attia, O.A. Badr, S.Y. Mahmoud, E.S. Farrag, I.A. El-Fiki, Chitosan and nano-chitosan for management of Harpophora maydis: Approaches for investigating antifungal activity, pathogenicity, maize-resistant lines, and molecular diagnosis of plant infection, Journal of Fungi, 2022, 8, 509. [Crossref], [Google Scholar], [Publisher]
[82]. W. Pongprayoon, T. Siringam, A. Panya, S. Roytrakul, Application of chitosan in plant defense responses to biotic and abiotic stresses, Applied Science and Engineering Progress, 2022, 15. [Crossref], [Google Scholar], [Publisher]
[83]. L.A. Nnamonu, R. Sha’Ato, I. Onyido, Alginate reinforced chitosan and starch beads in slow release formulation of imazaquin herbicide—preparation and characterization, 2012. [Crossref], [Google Scholar], [Publisher]
[84]. J. Li, J. Yao, Y. Li, Y. Shao, Controlled release and retarded leaching of pesticides by encapsulating in carboxymethyl chitosan/bentonite composite gel, Journal of Environmental Science and Health, Part B, 2012, 47, 795-803. [Crossref], [Google Scholar], [Publisher]
[85]. M. dos Santos Silva, D.S. Cocenza, R. Grillo, N.F.S. de Melo, P.S. Tonello, L.C. de Oliveira, D.L. Cassimiro, A.H. Rosa, L.F. Fraceto, Paraquat-loaded alginate/chitosan nanoparticles: preparation, characterization and soil sorption studies, Journal of Hazardous Materials, 2011, 190, 366-374. [Crossref], [Google Scholar], [Publisher]
[86]. A. Singh, A.K. Kar, D. Singh, R. Verma, N. Shraogi, A. Zehra, K. Gautam, S. Anbumani, D. Ghosh, S. Patnaik, pH-responsive eco-friendly chitosan modified cenosphere/alginate composite hydrogel beads as carrier for controlled release of Imidacloprid towards sustainable pest control, Chemical Engineering Journal, 2022, 427, 131215. [Crossref], [Google Scholar], [Publisher]